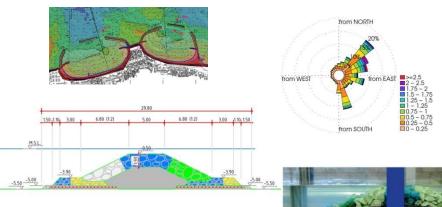


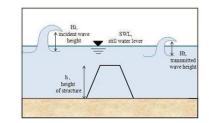
Verification of the Functional Efficiency of Submerged Breakwater by Field Measurements

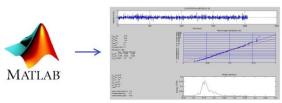
Main author: Traian Ionut Marin

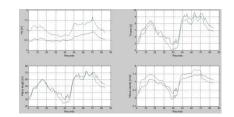
Co-author: **Boyan Savov**


Company: Van Oord Dredging and Marine Contractors B.V.

Date: November 19, 2016

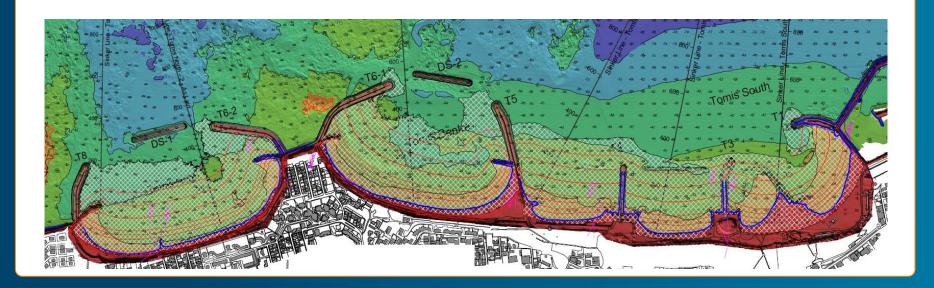



Contents


- 1. Introduction and Motivation
- 2. Wave conditions
- 3. Submerged breakwaters
- 4. 2D physical modeling
- 5. Measuring devices
- 6. Method
- 7. Data processing
- 8. Results
- 9. Conclusions

1. Introduction and Motivation

Project details

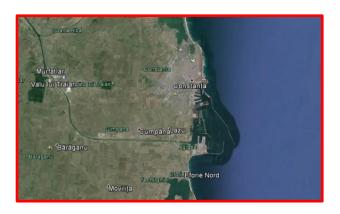

Project
Protection and Rehabilitation of the Southern Part

of the Romanian Black Sea Coast

Client
Romanian National Waters Administration (ANAR-ABADL)

Contractor
Van Oord – SCT Joint-Venture

Consultant Romair Consulting S.R.L.


1. Introduction and Motivation

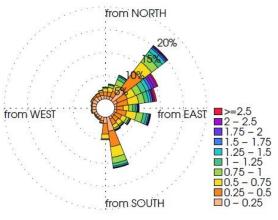
Project location

➤ Constanta city, South-Eastern part of Romania

1. Introduction and Motivation

Measurements scope

- Scope investigate the change in wave parameters due to the breakwater
- Estimate the transmission coefficient Ct
- Comparison of the 2D physical model with the real performance on the field
- Gaining confidence in reliable long-term beach protection predictions



2. Wave conditions

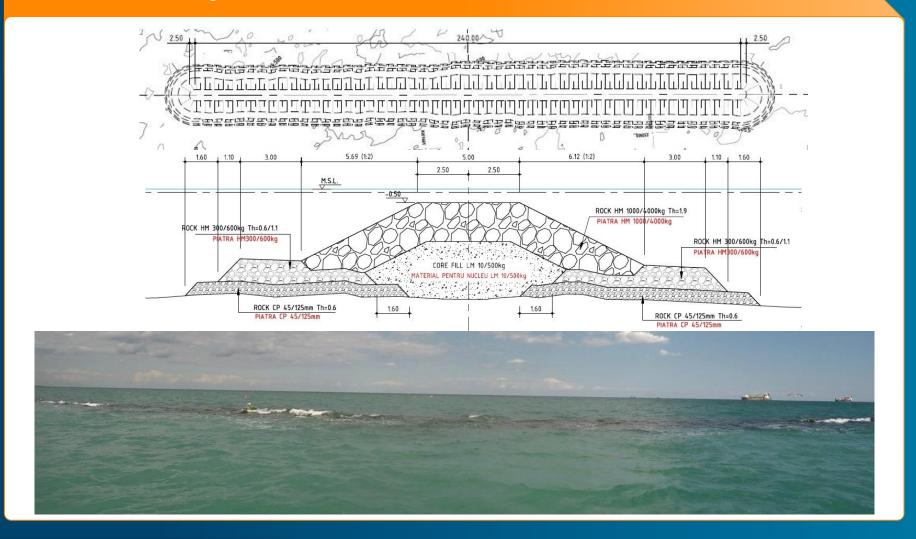
Design wave conditions

Annual wave rose for a nearshore point at 25.1 m water depth:

Inshore Independent Extreme Wave Conditions at 5m water depth

Wave	conc	lition	ıs co	incid	lent v	with	wate	r leve	el of	+1.5	mMS	L (p	er 30	° off	shore	dire	ection	n sec	tor)		
RP	0-30°			3	30-60°		60-90°		90-120°		120-150°		150-180°		180-210°						
(yrs)	H _{m0} (m)	(s) Lb (s)	MWD (°N)	H _{m0} (m)	T _p (s)	MWD (°N)	H _{m0} (m)	(s) L _p (s)	MWD (°N)	H _{m0} (m)	(s) T _p (s)	MWD (°N)	H _{m0} (m)	T _p (s)	MWD (°N)	H _{m0} (m)	T _p (s)	MWD (°N)	H _{m0} (m)	(s) T _p (s)	MWD (°N)
1	1.3	6.6	62	2.2	7.7	76	2.3	7.6	85	1.9	7.4	96	1.3	6.9	110	1.1	6.9	120	1.0	7.3	125
5	1.9	7.4	67	2.8	8.6	81	2.9	8.8	89	2.9	8.6	98	2.2	8.1	108	1.9	8.1	118	1.6	8.7	122
10	2.0	7.6	68	2.9	8.8	82	3.0	9.0	90	3.0	8.9	98	2.4	8.3	108	2.0	8.4	117	1.7	8.9	122
20	2.1	7.8	69	3.0	8.9	83	3.0	9.1	91	3.0	9.1	99	2.6	8.6	108	2.2	8.6	117	1.8	9.1	122
50	2.3	9.0	70	3.0	9.1	84	3.1	9.3	92	3.1	9.3	99	2.8	8.8	108	2.4	8.8	116	1.9	9.3	121
100	2.4	8.2	71	3.0	9.2	84	3.1	9.5	92	3.1	9.5	99	2.9	9.0	108	2.5	8.9	116	1.9	9.3	121
200	2.5	8.4	72	3.1	9.3	85	3.1	9.6	93	3.1	9.6	99	2.9	9.2	108	2.6	9.1	116	2.0	9.4	121

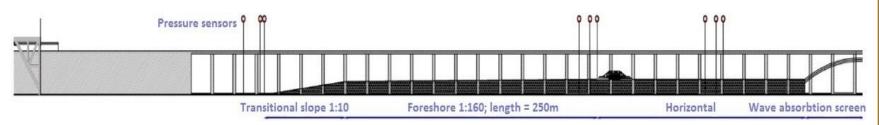
3. Submerged breakwaters


Location overview

3. Submerged breakwaters

Breakwaters design

4. 2D physical modeling


Modeling set-up

2D physical tests performed at Deltares in the Netherlands

Physical model test facilities at Deltares (wave flume 1 x 1.2 x 55m)

Schematic test set-up

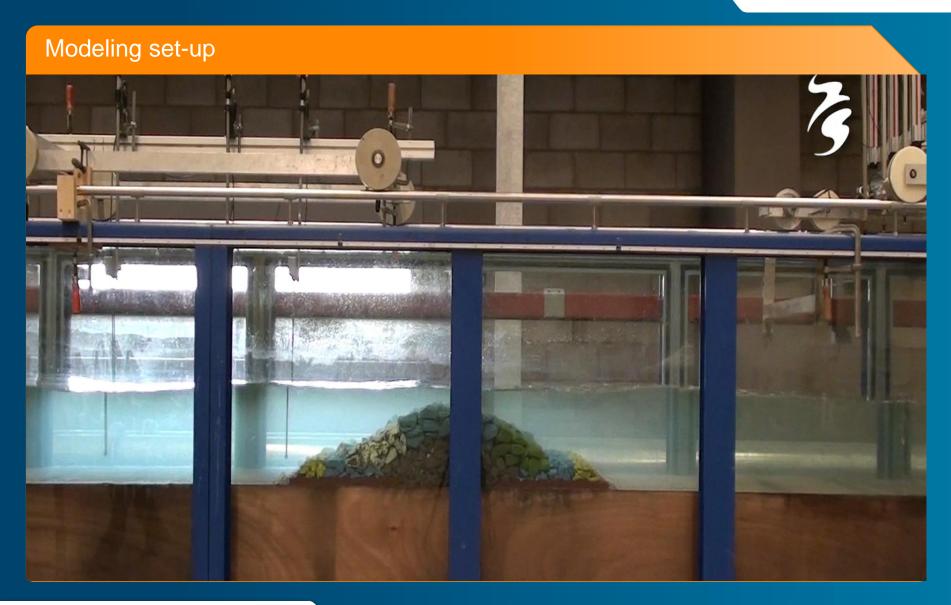
2D simulations and results

Deltares

Enabling Delta Life

Calibrated wave conditions submerged breakwater

	DD.	MSL		Deep		Toe		
Calibrated Conditions	RP	MISL	Hs	T _{pm}	T _{m-1,0}	Hs	T _{pm}	T _{m-1,0}
	[1/yrs]	[m+MN75]	[m]	[s]	[s]	[m]	[s]	[s]
Condition 101 (HW)	not defined	0.6	1.2	6.2	5.7	1.2	6.3	6.0
Condition 102 (HW)	1	0.6	2.3	8.8	8.1	2.3	8.9	8.8
Condition 103 (HW)	10	0.7	2.7	10.9	10.0	2.7	11.1	10.1
Condition 104 (SLS) HW	100	0.8	3.6	12.7	11.4	2.9	12.6	10.0
Condition 105 (SLS) LW	100 + DLWL	0.3	3.3	11.8	10.8	2.7	11.8	9.9
Condition 106 (ULS) LW	100 + extreme DLWL	0.0	3.5	11.9	10.8	2.7	11.9	9.9
Condition 107 (ULS) HW	100+20%	0.8	4.3	12.6	11.5	3.0	12.8	11.6


2D physical test results

- 7 simulations
- Second order wave generation
- JONSWAP spectrum
- 6 hours of simulations for each test
- Transmission coefficients: 0.57 0.69

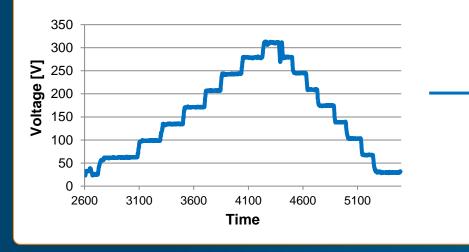
Crest Width 5m Wave Parameters									
	De	ер	T	oe	Transi	Ct			
Test	H _{m0}	Тр	H _{m0}	Тр	H _{m0}	Тр	E E		
T601	1.2	6.2	1.1	6.3	0.8	6.3	0.69		
T602	2.3	8.8	2.3	8.9	1.4	9.1	0.61		
T603	2.7	10.9	2.6	11.1	1.7	11.3	0.65		
T604	3.6	12.6	2.9	12.7	2.0	13.2	0.69		
T607	4.3	12.7	3.0	12.7	2.0	13.2	0.69		
T605	3.3	11.9	2.7	12.0	1.6	12.1	0.61		
T606	3.5	11.8	2.6	12.1	1.5	12.1	0.57		

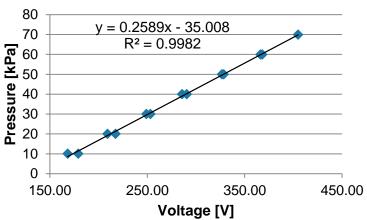
4. 2D physical modeling

5. Measuring devices

Pressure sensors

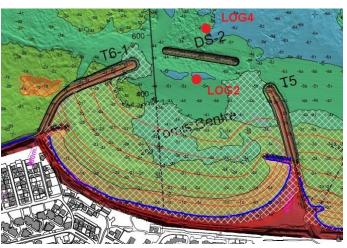
- Watertight cylinders with microchips and memory card
- Variable sampling frequency 4.5 Hz used
- Records the underwater pressure parameter
- General settings:
 - 30 min of recordings and 90 minutes break
 - one set of data every two hours: wave spectrum, Hs, etc.


5. Measuring devices



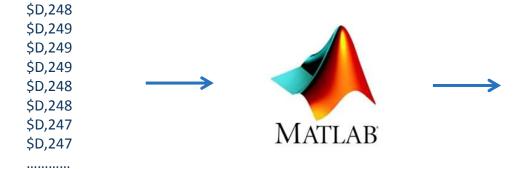
Calibration procedure

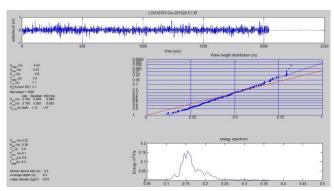
- The devices are lowered into the water gradually to known water depths
- Coefficients A and B are calculated to match the known hydrostatic pressure at certain depth
- $p = A \cdot X + B [Pa]$



Device installation procedure

- Devices set in the office
- Transported with a work boat
- Attached to a concrete anchor
- Signaled with a buoy
- GPS position saved
- Retrieved after the storm has passed

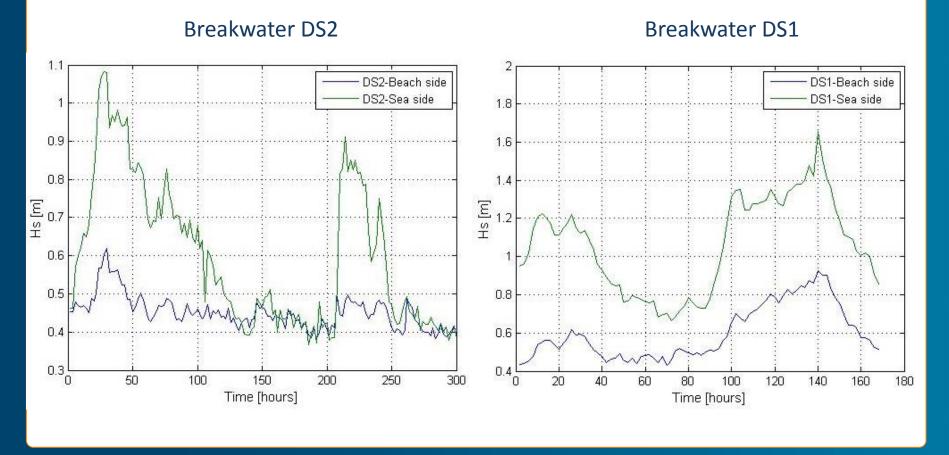

7. Data processing



Output

Scrip developed by TU Delft

Raw data ——— Results and Plots



Wave transmission

• One set of measurements for each of the 2 breakwaters

Comparison with the 2D physical model

2D Physical Model:

Hs [m]	Ct [-]
1.2	0.69
2.3	0.61
2.7	0.65
3.6	0.69
4.3	0.69
3.3	0.61

Field test:

Hs [m]	Ct [-]						
	DS1	DS2					
8.0	0.61	0.59					
1	0.53	0.56					
1.2	0.53	-					
1.4	0.58	-					
1.6	0.58	-					

9. Conclusions

- 2D flume testes 30% more conservative than field tests.
- Ct take approximately the same values for the same conditions
- Efficiency of the breakwaters proved to be higher than expected
- More test with higher Hs need to be performed to confirm the results
- Pressure sensors cheap, simple and reliable devices which provide consistent

results

Thank you for your attention!

Questions?

